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STUDY OF NONLINEAR OSCILLATIONS OF ELASTIC MEMBRANES 
 

1. Foreword 
 
Membrane structures have been used since the earliest of times as a means of receiving 
acoustic signals. However, in the past their analysis relied mostly on trial and error while 
modern analysis provides powerful tools for creating mathematical theory of description 
of their motions. Although deformations of these structures are essentially nonlinear, the 
linear theory provides an important starting point for understanding this complicated 
behavior.  
 
The necessity of creation of passive sensor technologies determines the importance of the 
study of elastic membrane oscillations. Unattended ground sensors can have as their basic 
element a circular membrane with fixed ends (clamped, simply supported or damped). 
Geometry of the membrane being chosen to be circular, the current investigation 
concentrates on the response analysis of the membrane. 
 

2. Statement of the Problem, Goals and the Main Method  
 
A thin circular elastic membrane with a simply supported boundary serves as a model of 
an acoustic receiver. An external source sends a flux of acoustic waves which fall on the 
membrane and incite it. This results in the propagation of elastic waves on the surface of 
the membrane. Vertical oscillations are of interest and horizontal deflections are 
neglected. Nonlinear oscillations of the surface of the membrane are governed by the 
damped Boussinesq equation. It is a second order in time and fourth order in space, 
dispersive, dissipative, nonlinear equation with a quadratic nonlinearity. Its linear part 
includes the fourth order classical elasticity operator and the third order term responsible 
for internal friction. Quadratic nonlinearity present in the equation includes second 
derivatives. It reflects dependence of the vertical deflection on the local curvature of the 
membrane.  
 
Goals of investigation consist in developing an efficient algorithm of solving the direct 
nonlinear boundary-value problem in question, i.e. deriving the formulas for the vertical 
deflection of the membrane, proving the convergence of the corresponding series in a 
certain function space and finding the acoustic pressure. Conducting numerical 
simulations is necessary for the comparison of behavior of the linear and nonlinear 
membranes. In addition, a progress should be made in finding the direction to the 
acoustic source and exploiting the nonlinearity for making the membrane more sensitive. 
The latter goal stands out as a new type of an inverse nonlinear problem which has never 
been solved before.  
 
Nonlinear version of the method of eigenfunction expansions is chosen as a main tool of 
constructing solutions. This method is well known for the classical linear models of wave 
propagation. Extending the method for solving nonlinear boundary value problems has 



been a recent development made by the Principal Investigator of the present work. 
Solution is obtained in the form of the series of eigenfunctions of the Laplace operator in 
a disc with homogeneous boundary conditions and periodicity conditions in the angle. 
More precisely, it is a Fourier-Bessel series, where Bessel functions are the radial 
eigenfunctions and exponentials are the angular ones. Bessel function zeros depend on 
two indices which reflects the interaction of radial and angular eigenfunctions. Expanding 
the nonlinearity into the eigenfunction series and obtaining the estimates of the 
eigenfunction coefficients is the key issue in applying this method. In contrast to 
Galerkin’s method which allows only to prove existence, our approach allows to 
construct solutions. 
 

3. Results 
 
Proving convergence of the series representing the solution and the nonlinearity forms the 
main difficulty and defines the function space where the solution exists. It was 
established that classical solutions of the boundary value problem can not be constructed 
in principle since convergence of the series is not enough to provide the necessary 
regularity. This is typical for many nonlinear initial-boundary-value problems. However, 
mild solutions can be constructed. They are defined as solutions of the integral equation 
obtained by integrating the original boundary-value problem with respect to time. 
 
New function spaces were introduced, namely anisotropic Sobolev spaces. The norm in 
such a space is the sum of the L2-norms of the usual derivatives weighted by tangential 
derivatives. These spaces are sensitive to the energy transfer in the angular direction and 
reflect the interaction of angular waves and the radial ones.  
 
A new family of special functions was introduced for improving the convergence of the 
series representing the solution. They owe their appearance to the nonlinearity and the 
circular geometry. These functions appear as a result of the series multiplication. They 
received the name of convolutions of  Rayleigh functions with respect to the Bessel 
index. Rayleigh functions are well known in the classical theory of linear disc 
oscillations. They are defined as series of inverse powers of the Bessel function zeros and 
reflect the circular geometry for linear problems and the boundary conditions. 
Convolutions of these functions reflect circular geometry, boundary conditions and the 
nonlinearity. These functions allow to improve the convergence of the eigenfunction 
series representing the solutions and to improve greatly the computational effectiveness 
of the algorithm. Convolutions of  Rayleigh functions were expressed in terms of the psi-
function (logarithmic derivative of the gamma-function and its derivatives). Asymptotic 
expansions for large values of the angular index were obtained. These asymptotics are 
essential for the estimates of the Fourier-Bessel coefficients in the representations of 
solutions. 
 
Eigenfunciton series representations were obtained for the vertical deflection of the 
circular membrane and the acoustic field in the plane of the membrane. These are mild 
solutions of the nonlinear boundary value problem in question. If a typical time-harmonic 



signal is chosen as a source, then the final formulas show a typically nonlinear effect of 
frequency multiplication. 
 
Numerical simulations were conducted in order to compare linear and nonlinear 
oscillations. Truncated eigenfunction series solutions were used for computations in the 
nonlinear case. Different angles for incident acoustic waves were tried. It was established 
that the created algorithm has excellent convergence properties. Just a few iterations were 
needed for securing enough precision. The conducted simulations clearly showed the 
picture of nonlinear waves traveling on the surface of the membrane and a much better 
sensitivity of the nonlinear membrane in comparison with the linear one. 
 
As regards the most difficult problem of finding the angle to the acoustic source (inverse 
nonlinear problem which deserves the name of the problem of the 21st century), some 
progress has been made. Indeed, one can establish the plane where the source lies. On the 
border (perimeter) of the membrane there is a spot where the maximum of the wave 
energy is located. One can draw the diameter line through the center of the disc and the 
point of the maximum. The plane going through this line perpendicular to the membrane 
contains the source of acoustic waves. Rigorous mathematical proof of this fact is being 
developed. 
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